Tetrahedron Letters No.17, pp. 1629-1632, 1967. Pergamon Press Ltd. Printed in Great Britain.

REARRANGEMENT OF N-CHLORO-N-ALKYL-ALKANESULFONAMIDES.

Mitsuo OKAHARA, Takehisa OHASHI and Saburo KOMORI Dept. of Applied Chemistry, Faculty of Engineering, Osaka University, Higashinoda, Osaka, Japan

(Received 16 January 1967; in revised form 6 February 1967)

Recent publications on the free radical rearrangements of N-haloamides to the corresponding 4-haloamides (1,2,3,4,5) have prompted us to study the photorearrangement of N-chlorosulfonamides.

We have found that N-chloro-N-alkyl-alkansulfonamides (I) readily rearrange to the corresponding chloroalkane isomers, i.e. N-alkyl-Y-chloroalkanesulfonamides (II) and N-alkyl-S-chloroalkanesulfonamides (III) under the influence of photo-irradiation or heat.

This reaction affords a promising method for the synthesis of sultam derivatives, since the formation of sultams by the alkali treatment of γ -chlorosulfonamides has recently been reported (8).

This communication describes the results obtained with N-chloro-N-t-butyln-butanesulfonamide, which was quantitatively synthesized by passing chlorine into N-chloro-N-t-butyl-n-butanesulfonamide (n_D^{20} 1.4718, active chlorine (%), found 15.03, calc. 15.56) was irradiated with a high pressure mercury lamp (150W) in benzene solution (10.0g N-chloro-N-t-butyl-n-butanesulfonamide in 150g of benzene) at 10 - 15°C under nitrogen until the active chlorine content of the solution was negligible.

The active chlorine disappeared within 10 - 15 minutes and a pale yellow liquid (9.8g, chlorine content 12.05%) was obtained.

The analysis of this product by g.l.c. (Apiezon L grease 10% on Diasolid L. 60 - 80 mesh, lm column, column temp. 200°) showed three major peaks. These peaks were shown to be N-t-butyl-n-butanesulfonamide (IV), N-t-butyl- γ -chlorobutanesulfonamide (V) and N-t-butyl-5-chlorobutanesulfonamide (VI) respectively by means of a comparison of their retention times with those of the pure compounds (V, m.p. 62 - 3° , VI, m.p. 39.5°).

The content of each compound in the product was estimated by g.l.c. using N-methyl-propanesulfonamide (b.p. $158 - 159^{\circ}$ at 7mm) as an internal standard, and it was found that the product contained 26.0% (IV), 60.9% (V) and 12.1% (VI).

When this product was treated with sodium hydroxide in methanol, the formation of five and six membered ring sultams was shown by g.l.c. analysis.

We also found that N-chloro-N-t-butyl-n-butanesulfonamide rearranged on heating up to 165° C under nitrogen without solvent to give 45.6% (V), 3.8% (VI) and 45.6% (IV).

In this reaction, however, the ratio of the δ -chloro to the γ -chloro compound (0.08) was smaller than that (0.2) observed when the dilute benzene solution of N-chloro-N-t-butyl-n-butanesulfonamide was irradiated.

In addition, we investigated the photochlorination of N-t-butyl-n-butanesulfonamide (IV) in order to compare the hydrogen abstraction by the sulfonamide radical with that by the chlorine atom.

A benzene solution of N-t-butyl-n-butanesulfonamide (7.0g IV in 100g benzene) was irradiated for 30 minutes with gaseous chlorine (an equivalent quantity to IV) at 10 - 15° and the reaction product was found to contain 16.0 % (V) and 1.6 % (VI) by g.l.c. analysis.

From the results obtained, the mechanism of the photo-rearrangement of Nchloro sulfonamides was considered to be analogous to that suggested by Neale (4) and Beckwith (3) for the photo-rearrangement of N-chloroamides.

The sulfonamide radical formed by the homolysis of the N-Cl bond was assumed to abstract γ - and δ -hydrogens of n-butyl group intramolecularly with the formation of a six membered (VII) or seven membered (VIII) transition states as shown below.

However, in the reaction initiated by thermal homolysis of N-chloro-N-tbutyl-n- butanesulfonamide without solvent, the intermolecular hydrogen abstraction by sulfonamide radical was supposed to occur competitively to an appreciable extent, because, in this reaction, N-t-butyl-n-butanesulfonamide was obtained in almost the same quantity as the rearranged products (V, VI) and the content ratio of VI to V was found to be very low, in accordance with the high reactivity of sulfonamide radical towards secondary hydrogens (6,7).

No.17

Reference

1) D.H.R.Burton and A.L.J.Beckwith, Proc.Chem.Soc., 335 (1963)

2) D.H.R.Burton, A.L.J.Beckwith and A.Goosen, J.Chem.Soc., 181 (1965)

3) A.L.J: Beckwith and J.E.Goodrich, Aust.J.Chem., 18, 747 (1965)

4) R.S.Neale, N.L.Marcus and R.G.Schepers, J.Amer.Chem.Soc., 88, 3051 (1966)

5) R.C.Petterson, <u>J.Amer.Chem.Soc.</u>, <u>86</u>, 1648 (1964)

6) A.E.Fuller and W.J.Hickinbottom, J.Chem.Soc., 3228 (1965)

7) O.Cermy and J.Hajck, Coll. Czech.Chem.Commn., 26, 2624 (1961)

8) A.D.Bliss, W.K.Cline and O.J.Sweeting, J.Org.Chem., 29, 2412 (1964)